
Kernel-based, Ellipsoidal Conditions in the Real-Valued
XCS Classifier System

Martin V. Butz
Department of Cognitive Psychology

University of Würzburg
Würzburg, 97070, Germany

mbutz@psychologie.uni-wuerzburg.de

ABSTRACT
Many learning classifier system (LCS) implementations are
restricted to the binary problem realm. Recently, the XCS
classifier system was enhanced to be able to handle real-
valued inputs among others. In the real-valued enhance-
ment, XCSF applies as a function approximation system
that partitions the input space in hyperrectangular sub-
spaces specified in the classifiers. This paper changes the
classifier conditions to hyperspheres and hyperellipsoids and
investigates the consequent performance impact. It is shown
that the modifications yield improved performance in con-
tinuous functions. Even in discontinuous functions with
parallel boundaries, XCS’s performance does not degrade.
Thus, for the real-valued problem domain, ellipsoidal con-
dition structures can improve XCS’s performance. From a
more general perspective, this paper shows that XCS is read-
ily applicable in diverse problem domains. To apply the
system even more successfully, suitable kernel-based bases
need to be found and used as classifier conditions. XCS
distributes the available structures over the problem space
evolving more specialized structures in more complex prob-
lem subspaces.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—connectionism
and neural nets; I.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods, and Search; I.5.1 [Pattern Recog-
nition]: Models—fuzzy set; statistical; neural nets; I.5.0
[Pattern Recognition]: General

General Terms
Algorithms, Experimentation, Theory, Performance

Keywords
Learning Classifier Systems, XCS, GAs, Function Approxi-
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1. INTRODUCTION
Learning classifier systems (LCSs) [15, 16] have gained in-

creasing interest in the genetic and evolutionary computa-
tion literature. Especially the accuracy-based XCS classifier
system [22, 23] was successfully applied in many real-world
problems [3, 4]. The recent analyses [10, 9, 11] have shown
that XCS scales machine learning competitively, that is, it
scales polynomial in solution complexity, problem length, re-
liability, and error tolerance. The results confirm that XCS
is a valuable learning system that is able to solve complex
problems machine-learning competitively. The advantages
of an XCS-based learning approach lie in its online learning
capability, its noise robustness, the generality in the learning
mechanism, and its continuous adaptivity.

The basic XCS system is only applicable in binary prob-
lems. Lanzi has previously experimented with messy coding
and S-expressions [17, 18]. Bull and O’Hara introduced full
multi-layer perceptron classifiers [7]. Wilson [24, 25] has suc-
cessfully enhanced the system to the integer- and real-valued
problem domains. The resulting system, XCSR, partitions
the problem space in hyperrectangular subspaces. In each
subspace, XCSR learns a real-valued prediction of the ex-
pected reward or value. In this way, XCS evolves a payoff
surface that is represented by its population of classifiers.

This paper investigates if the hyperrectangular conditions
are suitable bases for partitioning the problem space. It is
suggested that a function may be approximated more effi-
ciently if conditions do not specify hyperrectangles but hy-
perspheres or, more generally, hyperellipsoids. We show that
this new representation is in fact equally or more effective
in most real-valued functions investigated.

From a machine-learning perspective, we show that XCS’s
conditions can be any type of kernel-based basis structure.
XCS searches a given feature space defined by the available
basis structures and it evolves a problem space partitioning
that allows a highly accurate classification of the data. Thus,
XCS evolves the available features partitioning the problem
space in such a way that most accurate classifications or
predictions are possible.

The remainder of this work first gives a short introduction
to XCSR and investigates its performance in several real-
valued functions. Hereby, we point out several representation-
based constraints. Next, we introduce spherical conditions,
ellipsoidal conditions and general ellipsoidal conditions. The
three approaches are evaluated and compared on several
real-valued functions. Summary and conclusions put the
results in a bigger perspective.
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2. XCS FOR REAL-VALUED INPUTS
XCS is a typical Michigan-style learning classifier systems

(LCSs) [16, 5]. The following introduction of XCS intro-
duces the enhanced XCS system for real-valued inputs [24,
25, 26, 27]. The consequent system specifies hyperrectan-
gles in the classifier conditions. That is, given a real-valued
input vector s = (s1, ..., sn) ∈ S ⊆ �n, a condition in XCS
specifies intervals for all n values. A classifier matches if the
current problem instance s lies in all n intervals. Since Stone
and Bull [20] showed that the center-spread-based condition
representation yields an unnecessary learning bias at value
boundaries, we use interval coding with lower and upper
boundaries. Additionally, we use linear predictions that are
dependent on the input x, as introduced in [26, 27]. In the
remainder of this work we will refer to this version of a real-
valued XCS classifier system as XCSR.

2.1 Basic XCSR System
As in all LCSs, the knowledge in XCSR is represented

by a population of classifiers. Each classifier in XCSR has
five main components. (1) The condition part C specifies a
hyperrectangle by the means of interval encoding, that is,
C = (l1, u1, l2, u2, ..., ln, un). (2) The action part A specifies
an available action, that is, A ∈ A, where A = {A1, ..., Am}
is the set of all possible actions in the problem. (3) The
reward prediction R specifies a linear prediction of the in-
put vector s in the form of a weight vector, that is, R =
(w0, w1, ..., wn) where w0 is the offset weight. (4) The pre-
diction error ε estimates the mean absolute deviation of the
reward predictions. (4) The fitness F specifies the relative
accuracy of the classifier. The values are iteratively mod-
ified and evolved by the means of reinforcement learning
(RL) techniques and a GA.

XCSR is initialized with an empty population. Initial clas-
sifiers are generated by a covering mechanism that creates
intervals controlled by parameter r0. The resulting inter-
val size lies between 0 and 2r0. Covering is triggered if not
all actions are represented in the current match set. Each
learning iteration, given the current problem instance s ∈ S ,
a match set [M ] is formed that contains all classifiers in the
current population [P ] whose conditions are satisfied by s.
Thus, s lies in each of the hyperrectangles of all matching
classifiers. [M ] can then be used to form a prediction about
the class or value of the problem instance. Hereby, XCSR
forms a prediction array P (A) of expected payoff values for
all possible actions. The array is used to make an action
decision. During learning, the action is usually chosen at
random. All classifiers in [M ] that specify the chosen action
A form the action set [A]. After action execution, the envi-
ronment provides scalar feedback r ∈ � of the actual value
of the executed action. In this paper we are interested in the
predictive capabilities of XCSR. Thus, we focus on function
approximation and only one (dummy) action is available.

XCS iteratively learns from the successive problem in-
stances. First, it uses the feedback r to update the reward
prediction, prediction error, and fitness estimate of all clas-
sifiers in [A]. Hereby, we use the usual delta update rule for
the weight vector R, that is,

w0 ← w0 + η(r − ||R(l − s)∗||),
wi ← wi + η(r − ||R(l − s)∗||)(si − li), (1)

where η denotes the learning rate and ||Rs∗|| the inner prod-
uct of weight vector R and the difference vector (l-s) that is

enhanced by an additional one entry at the first position to
account for w0. Note that we do not apply an additional nor-
malization factor as done elsewhere [27]. Comparisons with
the normalization factor yielded hardly any performance dif-
ferences. Next, we update reward prediction error.

ε← ε + β(|r − P (A)| − ε) (2)

Finally, fitness is updated first determining the accuracy of
the classifier:

κ =

8<
:

1 if ε < ε0

α
“

ε
ε0

”−ν

otherwise
,

κ′ =
κ · numP

cl∈[A]

cl.κ · cl.num
,

F ← F + β(κ′ − F ), (3)

where ε0 is the minimum error threshold, α an error offset,
and ν the degree of the polynomial. After rule evaluation
and possible GA invocation, the next iteration starts.

XCS applies a GA for rule evolution. The GA selects two
parental classifiers from the current action set [A] using set-
size relative tournament selection [13]. Two offspring are
generated by applying crossover and mutation to the two
selected parents. We apply a relative real-valued mutation
instead of the fixed interval mutation previously used. The
relative real-valued mutation moves the center of the interval
uniformly randomly within its current interval. Addition-
ally, it increases or decreases (equally likely) the size of the
current interval by zero to fifty percent chosen uniformly
randomly. The relative real mutation showed to improve
performance throughout the experiments. Especially if the
population is initialized very general, performance improved
much faster and converged more stably. Parents remain in
the population, competing with their offspring. The popu-
lation of classifiers [P ] is of fixed size N . Excess classifiers
are deleted from [P ] with probability proportional to an es-
timate of the size of the action sets that the classifiers occur
in. If the classifier is sufficiently experienced and its fitness
F is significantly lower than the average fitness of classifiers
in [P ], its deletion probability is further increased.

2.2 Learning Bias in XCS
The evolutionary algorithm is the main component that

searches for better problem space partitions with respect
to the achieved predictive accuracy. GA selection propa-
gates currently most accurate classifiers. Mutation searches
in the neighborhood for better space partitions. Crossover
combines previously successful sub-partitions. Selection in
action sets in combination with deletion in the whole pop-
ulation causes a generalization pressure [12]. Moreover, the
mechanism has a niching effect [8] biasing the evolutionary
process towards evolving a classifier population that covers
the whole problem space.

While the evolutionary mechanism is designed to evolve
partitions in which linear approximations are maximally ac-
curate, the gradient descent-based methods expressed in
equations 1, 2, 3 estimate the suitability of the current par-
titions. Thus, XCS applies a distributed, local search mecha-
nism combining evolutionary techniques with gradient-descent
learning techniques to find a global problem solution. As a
whole, XCS strives to evolve a complete, maximally accu-
rate, and maximally general problem solution.
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2.3 Performance of XCSR
Before we introduce the applied system modifications we

first evaluate XCSR’s performance on three challenging two
dimensional functions:

f1(x, y) = ((x ∗ 3)%3)/3 + ((y ∗ 3)%3)/3 (4)

f2(x, y) = (((x + y) ∗ 2)%4)/6 (5)

f3(x, y) = sin(2Π(x + y)), (6)

where the % is the modulo operator. All functions in this
paper are defined for values between zero and one in all their
n dimensions. Figure 1 shows the three functions. Function
f1 is an axis-parallel step function. It is expected to be
learned quite effectively by XCSR since the steps are rect-
angular so that it is possible to represent each step with
one classifier. Function f2 is an axis-diagonal step function.
XCS faces oblique boundaries so that the approximation is
expected to be significantly harder. Finally, function f3 is
an axis-diagonal, continuous sinusoidal function. Additional
challenges due to the curvature are expected.
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Figure 1: The Axis-parallel step function f1, the
axis-diagonal step function f2 and the sinusoidal
function f3.

Predictive performance of XCSR is shown in figure 2. All
experiments herein are averaged over 20 experiments. If not
stated differently, parameters were set as follows: N = 6400,
β = η = 0.5, α = 1, ε0 = .01, ν = 5, θGA = 50, χ = 1.0,
µ = 0.05, r0 = 1, θdel = 20, δ = 0.1, θsub = 20. GA
subsumption was applied. Uniform crossover was applied.
Note that we start with a fairly general population due to
the high covering value r0. We also apply a rather high
learning rate that showed to slightly speed-up performance
due to faster evolving approximations. If the problems were
noisy problems it would be necessary to decrease the learn-
ing rate. The parameter values are nearly identical to the
values chosen in Wilson’s work [27].

Figure 2 confirms the expected results. Function f1 is
learned best resulting in a low error of about .007—significantly
below the error threshold ε0. The axis-diagonal step func-
tion is initially slightly easier to approximate due to its
smaller y-value range. While learning proceeds the popu-
lation size rises to a higher level and the prediction just
reaches .01. Due to the obliqueness of the function, the
hyperrectangular conditions make it harder to evolve an ef-
fective space partitioning. However, the oblique structure is
still easier to represent than the sinusoidal function. In f3,
XCSR does only reach an error level of .011. Learning takes
longer and the consequent population size is much higher.

Function approximation performance is shown in figure 3a,
b, c (resolution 50× 50). In the parallel-step function, XCS
approximates the steps accurately. No severe under- or over-
estimations occur except at the boundaries. The condition
structure is the main obstacle in functions f2 and f3 since
the steps in the diagonal-step function are oblique and the
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Figure 2: XCSR performs well in the axis-parallel
function f1. Performance is worse in the axis-
diagonal function. In the sinusoidal function, XCSR
does hardly reach the targeted level of 1% error.

sinusoidal function has additionally a strong curvature. Sev-
eral approaches are imaginable to improve performance of
XCSR. If the typicality of the function was known, then per-
formance could certainly be improved. For example, in the
case of the diagonal step function, an enhancement with di-
agonal boundaries should strongly improve performance. It
should also be helpful in the sinusoidal function. However,
it cannot be expected that such boundary types are known
beforehand.

A more general approach lies in a boundary approxima-
tion by the means of circular or ellipsoidal structures. Al-
though these structures cannot be expected to yield perfect
approximations, the piecewise linear approximations can be
expected to suitably overlap to represent a more smooth
approximation surface. Disruptive effects in the corners of
hyperrectangles are expected to be prevented. The next
section introduces such hyperspherical and hyperellipsoidal
condition structures to XCSR.

3. ELLIPSOIDAL CONDITIONS
This section introduces the new spherical and ellipsoidal

condition structures to XCSR. The condition parts of the
classifiers in XCSR are changed. We start with conditions
represented by hyperspheres and then proceed to the more
general ellipsoids. All enhancements are related to radial
bases structures since we use a Gaussian to represent the
structures.

3.1 Hyperspheres
The conditions are changed to hyperspheres in that a con-

dition part is now represented by a center point and a devi-
ation, that is, C = (m1, m2, ..., mn, σ). A classifier then is
active if the current problem instance lies within a certain
range of the specified hypersphere. We use the Gaussian
kernel function to determine the activity of a classifier:

cl.ac = exp

„
−||s −m||2

2σ2

«
, (7)

where m = (m1, ..., mn). To determine if a classifier is ac-
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XCSR in axis-parallel step function
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XCSR in axis-diagonal step function
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XCSR in sin(2Π(x+y)) function
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Figure 3: Average approximation error in various
function approximate tasks. (a) The boundaries of
the axis-parallel function are well-approximated by
XCSR. (b) In the case of oblique steps, XCSR misses
some of the boundary points. (c) In the sinusoidal
function, XCSR under- or overestimates. Corners
and areas with strong curvature are affected most
severely.

tive, its activity cl.ac needs to lie above a threshold θm. The
smaller θm, the larger the receptive field and thus the prob-
ability of matching of a condition structure. In a sense, θm

is the pendant to σ. Since σ is evolved, θm can be fixed. It
is set to θm = .7 throughout the experiments. In general,
it should be noted that spheres could be defined slightly
more effectively simply using the l2 norm. The chosen radial
bases conditions, though, allow the immediate enhancement
to fuzzy conditions. Moreover, they emphasize the poten-
tial of substituting the structure with any other kernel-based
basis structure.

Covering, mutation and crossover need to be adjusted.
When creating a covering classifier, the center is set directly
to the current values (that is, m = s) and the deviation σ is
set uniformly randomly between zero and r0 (zero excluded).
For mutation, we define a relative mutation similar to the

one introduced to XCSR with hyperrectangles above. Each
attribute in the condition part is mutated with a probability
µ. If an attribute of the center is mutated, the new value m′

i

is set to a value uniformly randomly chosen in the interval
the classifier applies in, that is, |mi − m′

i| ≤ σ
√−2 log θm.

The standard deviation σ is either increased or decreased
(equally likely) between zero and 50% chosen uniformly ran-
domly. If the standard deviation is larger than a deviation
necessary to contain the whole problem space, it is set to
that value, that is:

σ ≤
pPn

i=1(u
∗
i − l∗i )2√−2 log θm

, (8)

where u∗
i and l∗i denote the maximum upper and lower val-

ues of each dimension, respectively. As crossover operator
we chose uniform crossover since no dependencies between
the dimensions are known. A classifier is considered as more
general if its hypersphere completely contains the other hy-
persphere.
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Figure 4: While the axis-parallel step function is
harder to learn for XCSR with hyperspheres, the
axis-diagonal as well as the sinusoidal functions are
approximated easier.

Performance of XCSR with hyperspheres is shown in Fig-
ure 4. In the axis-parallel step function, XCSR with hyper-
spheres reaches a comparable performance level. However,
since hyperspheres are not well-suited to approximate axis-
parallel boundaries, the condition structure complicates the
task so that more learning time is required and more classi-
fiers are needed for an equally accurate approximation. The
roles are reversed in the axis-diagonal step function: With
hyperspheres, XCSR needs less classifiers to reach a bet-
ter performance than with hyperrectangles. Also learning
is faster. Similar performance differences are observable in
the sinusoidal function. The final population size is again
smaller and learning proceeds faster. Moreover, the final
approximation is more accurate when hyperspheres are ap-
plied. In both cases, the unnatural space partitioning of an
oblique function via hyperrectangles (1) requires more spe-
cialized final classifiers and (2) causes unsuitable approxi-
mations particularly in the corners of the rectangles.

Figures 5a, b, c show the three-dimensional error sur-
faces when spheroidal conditions are used in XCSR. XCSR
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XCSR with hyperspheres in axis-parallel step function
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XCSR with hyperspheres in axis-diagonal step function
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XCSR with hyperspheres in sin(2Π(x+y)) function

 0  0.2  0.4  0.6  0.8  1
x

 0  0.2  0.4  0.6  0.8  1

y

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15
pred.error

(c)

Figure 5: (a) While the axis-parallel steps are
slightly harder to approximate with hyperspherical
conditions. (b) In the case of oblique steps, hyper-
spherical conditions allow a better approximation.
(c) The sinusoidal function can be better approxi-
mated with hyperspherical conditions.

does not approximate the axis-parallel steps completely ac-
curately. However, the surfaces inside the steps are approxi-
mated more accurately so that the performance average over
the whole problem reaches a similar level. The axis-diagonal
step function as well as the sinusoidal function are both bet-
ter approximated when hyperspherical conditions are used.
In the case of the axis-diagonal step function, the spherical
condition structure is slightly recognizable since the errors
at the steps are slightly bend indicating that a circle tends to
overlap with the boundary. The performance error remains
smaller since the overlap is less severe than in the case of
hyperrectangles.

Besides the performance curves it is interesting to inves-
tigate how XCSR evolves the generality of its conditions.
We expect that XCSR evolves more specialized conditions
in regions in which the curvature of the function is high-
est since in those regions linear predictions are hardest to
fit. Figure 6 confirms this suspicion in the sinusoidal f3

XCSR with hyperspheres in sin(2Π(x+y)) function
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Figure 6: The standard deviations of classifier con-
ditions correlate with the curvature of the approxi-
mated sinusoidal function f3. Worst approximations
are encountered at the boundaries of the problem
space.

function. The standard deviation (or generality) of the con-
dition parts of the matching classifiers directly depends on
the curvature of the underlying function. The outlayers are
located at the top and bottom corner of the space (that is,
around 1,0 and 0,1). Since the occurrence in this region is
small, the classifiers tend to cover larger regions.

The reader might have recognized by now that there is
quite a severe limitation in the simple sinusoidal conditions.
If the complexity of the target function differs in different
dimensions, XCSR with the simple hyperspheres cannot be
expected to learn very well since hyperspheres are equally
spaced in all dimensions. Take as an example the following
function:

f4(x1, x2, x3, x4) = x2 + x4 + 2Π sin(x1) + 2Π sin(x3) (9)

This four-dimensional function is easily linearly approxi-
mated in the x2 and x4 dimensions. Dimensions one and
three are much harder to approximate. Figure 7 shows per-
formance of XCSR with hyperrectangles and hyperspheres.
Clearly, the hyperrectangular encoding outperforms the hy-
perspheroidal encoding. To represent the problem effec-
tively, the space should only be partitioned in dimensions
one and three. The additional partitioning in the other two
dimensions forced by the spheroidal encoding hinders the
evolution of an effective space partitioning. The next section
solves this problem introducing hyperellipsoidal conditions.

3.2 Hyperellipsoids
While hyperspheres have a common radius, hyperellip-

soids have different radii (or deviations) for different axis.
A hypersphere is a special case of an hyperellipsoid. To rep-
resent hyperellipsoids with an XCS condition, we need to
redefine the condition part as follows:

C = (m1, m2, ..., mn, σ1, ..., σn) (10)

The condition is now represented by a center point and devi-
ations in all n dimensions. The activity of a classifier given
the current problem instance s is now defined as:

cl.ac = exp

 
−

nX
i=1

(si −mi)
2

2σ2
i

!
, (11)

effectively dividing in each dimension the squared distance
from the center by twice the variance in that dimension.
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Figure 7: In the four-dimensional function f4,
spheroidal conditions are outperformed by hyper-
rectangular ones. Hyperellipsoidal conditions alle-
viate the restriction.

As in the case of hyperspheres, a classifier is active, if its
activity cl.ac lies above the threshold θm.

Again, we need to adjust covering, mutation and crossover.
In covering, the center of the condition is again set to the
current value, that is, m = s. The deviations σi are each
chosen independently, uniformly randomly between zero and
r0 (zero excluded). Mutation is done as in the case of hy-
perspheres only that for each dimension each separate σi is
considered. If any σi is larger than the deviation necessary
to contain the whole problem dimension, it is set to that
value, that is:

∀i : σi ≤ u∗
i − l∗i√−2 log θm

(12)

The crossover operator is uniform crossover over all 2n pa-
rameters of a condition part. Finally, a classifier is regarded
as more general if it completely contains the other classifier
in all n dimensions considered separately.

Performance in the test functions f1, f2, f3 (Figure 8) is
similar to that of the hyperspherical ones. The population
sizes converge to a higher level, though, due to the additional
variability in the conditions. Also the three dimensional
error surfaces do not differ significantly (not shown).

Performance in the crucial f4 function, however, is strongly
improved. Figure 7 shows that hyperellipsoids enable XCSR
to reach a similar performance level to the representation
with hyperrectangles. Note that XCSR with hyperellipsoids
however does not beat the performance of XCSR with hy-
perrectangles in f4. This can be explained by the indepen-
dence of the four dimensions: the hyperrectangular encod-
ing basically approximates the underlying function evolving
linear approximations for each dimension. The hyperrect-
angular form causes the independence assumption in the
four dimensions. However, if there are dependences like in
the diagonal-step function or the sinusoidal function, the as-
sumption is violated and the approximation suffers. Spher-
ical or the more general ellipsoidal conditions alleviate this
independence assumption.

Nonetheless, also the hyperspherical conditions obey the
dimensionality in that the axes of the hyperspheres coincide
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Figure 8: Hyperellipsoidal conditions yield similar
performance to hyperspherical conditions in the first
three test functions.

with the dimensional axes. The independence assumption
still exists—albeit in a less severe form. The next section
introduces general hyperellipsoidal conditions in which the
independence assumption is completely abolished.

3.3 General Hyperellipsoids
To create an axis-independent condition structure, we now

introduce general hyperellipsoidal conditions to XCSR. The
next condition part does now not only consist of a center
and the length of each axis, but additionally considers in-
teractions between the axis using a full matrix. The new
condition part is defined as:

C = (m1, m2, ..., mn, σ1,1, σ1,2..., σn,n−1σn,n) (13)

The condition is represented by a center point and a ma-
trix. Note that we do not restrict the matrix in any way
fully handing over the responsibility of evolving proper ma-
trices to the evolutionary component. The new activity of
a classifier is now defined as:

cl.ac = exp

 
−
Pn

i=1(
Pn

j=1(sj −mj)σij)
2

2

!
, (14)

effectively multiplying the difference vector s −m with the
matrix, which effectively specifies the inverse covariance ma-
trix. The matrix multiplication allows any rotations in the
n-dimensional space as well as any possible squeezing and
stretching. The hyperellipsoids of the previous section are a
special case of these general hyperellipsoids. When only the
matrix diagonal contains non-zero values, the condition is
equivalent to a condition in the previous section with equal
center and inverse deviation values (σi = 1/σii). Classifier
activity is again controlled by threshold θm.

In covering, the center of the hyperellipsoid is set to the
current value. Only the diagonal entries in the variance ma-
trix are initialized to the squared inverse of the uniformly
randomly chosen number between zero and one. All other
matrix entries are set to zero. In this way, covering creates
condition parts that are on average identical to the ones cre-
ated by the covering mechanism in the previous (restricted)
hyperellipsoids. Mutation is similarly adjusted in that each
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Figure 9: General hyperellipsoidal conditions fur-
ther improve performance compared to (restricted)
hyperellipsoidal conditions in the first three test
functions. Also population sizes are smaller.

matrix entry is mutated separately maximally decreasing
(increasing) the value by 50%. If the value was set to zero,
it is initialized to a randomly chosen value as in covering for
the diagonal matrix entries. The values of the matrix entries
are unrestricted. Uniform crossover is applied to all n + n2

condition part values. It is hard to determine exactly if a
condition is more general than another condition. We chose
to use the approximation that a condition is more general if
its interval contains the interval of the other classifier plus
the distance to the other classifier in the direction of that
other classifier.

Performance of XCSR with general hyperellipsoidal con-
ditions in functions f1, f2, f3 is shown in Figure 9. Function
approximation is improved in all three cases and also popu-
lation sizes reach a smaller level. XCSR is able to exploit the
additional freedom in the hyperellipsoidal structures turn-
ing and tweaking them to the most effective subspace ap-
proximations. In the f4 problem, XCSR’s performance with
general hyperellipsoids stays slightly above the performance
with restricted hyperellipsoids indicating that the abolished
independence assumption between the axis makes the prob-
lem harder (Figure 7).

Most obvious becomes the power of general hyperellip-
soidal conditions in the three dimensional sinusoidal func-
tion:

f5(x1, x2, x3) = sin(2Π(x1 + x2 + x3)) (15)

This function is not only more difficult in the additional di-
mension in comparison with the sinusoidal function f3, but
it also contains three full sinuses instead of two. Figure 10
shows that only XCSR with general hyperellipsoidal con-
ditions reaches an error of less than .01. Moreover, the de-
crease in population size confirms that XCSR finds a suitable
ellipsoidal shape for the condition part. The shape spreads
throughout the population, which results in the observable
population size decrease. With hyperspheres or (restricted)
hyperellipsoids, performance is worse than with general hy-
perellipsoids but clearly beats the hyperrectangular approx-
imation.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  50  100  150  200  250  300  350  400  450  500

pr
ed

. e
rr

or
, p

op
.s

iz
e/

30
k

number of learning steps (1000s)

XCSR with various conditions in f5

hyperrectangles: pred.error
pop

hyperspheres: pred.error
pop

hyperellipsoids: pred.error
pop

general hyperellipsoids: pred.error
pop

Figure 10: In the three-dimensional sinusoidal func-
tion, only the general hyperellipsoidal conditions en-
able accurate and effective function approximation
with XCSR.

4. SUMMARY AND CONCLUSIONS
XCSR traditionally used hyperrectangular conditions to

partition the problem space. This paper has shown that
XCSR can also effectively learn when hyperspherical or hy-
perellipsoidal conditions are evolved.

The performance comparisons in various function approx-
imation tasks confirmed the interdependence of condition
structure and function type. XCSR with hyperrectangles
implicitly assumes that the n−dimensions contribute to the
outcome of the function independently. If this was the case
and the fact was known, however, it might be better to
apply n independent XCSR modules and combine the pre-
dicted outcome—as has been done for example for hidden
Markov models [14].

If dimensional dependencies are unknown, it is advanta-
geous to apply a more general condition structure. Hyper-
spheres make the approximation of diagonal problem bound-
aries more effective. Hyperellipsoids further facilitate the
approximation of unequally structured dimensions. Gen-
eral hyperellipsoids, whose orientation is not bounded by the
axis, improve the capabilities of the former further in func-
tions in which the shape of the partitions are most suited
for linear predictions when rotating and squeezing the hy-
perellipsoidal structures.

The paper also confirmed that XCSR is a very general
and flexible learning system. The condition structures can
be easily exchanged. Enhanced expressibility allows more
accurate and effective function approximation as long as the
function is sufficiently difficult (nonlinear). Thus, XCSR’s
learning success strongly depends on the chosen space parti-
tions representable in the classifier conditions. The more the
partition structures are suited to separate the nonlinearities
in the problem, the more effective XCS will learn.

Several enhancements building on this work come to mind
that are discussed in the following.

The current XCSR system with hyperellipsoids may be
improved in its covering and mutation operators. Muta-
tion could be improved by constraining mutation to have
predictable effects on the condition structure, such as direct
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rotation or explicit enlargements in all dimensions of the hy-
perellipsoid. Currently, mutation had to detect such options
implicitly—albeit with actual surprising success.

The enhancement to a fuzzy XCS version is imminent
and can be readily integrated into the ellipsoidal framework.
Preliminary experiments in this respect, however, did not
yield any further improvement in performance.

The performance comparisons showed that more general
condition structures can delay learning progress. Thus, it
might be interesting to allow the evolution of several condi-
tion structures in parallel. An initial restricted competition
using additional niching techniques, as done in [1] for GAs-
sist, may prevent the expectable premature convergence to
one (possibly sub-optimal) structure.

XCSR should be applied to other domains with other
kernel-based bases. The more suitable the chosen basis
structure for the problem at hand, the more accurate and
quickly XCSR will learn. The recent book on kernel methods
can provide a solid basis for successful XCSR applications
to new problem domains [19].

XCSR may be applied to other predictive problems, such
as reinforcement learning problems or predictive control prob-
lems, in which the prediction is not an actual function value
but a consequent sensory input or sensory change [2]. Albeit
in a different way than Holland’s original vision [16], once
such applications are successfully carried through, the en-
hanced XCS system may be more similar to an actual part
of a cognitive system than ever before.

Finally, it should be mentioned that this study has been
carried through with XCSR. Due to the generally similar
principles of other LCSs, the results should carry over to
other LCS frameworks, such as ZCS [21, 6]. Additionally
necessary modifications and adjustments remain to be in-
vestigated.
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